Transcriptomic and metabolic signatures of neural cells cultured under a physiologic-like environment

Fecha de publicación:

Grupos

Abstract

Cultured brain cells are used conventionally to investigate fundamental neurobiology and identify therapeutic targets against neural diseases. However, standard culture conditions do not simulate the natural cell microenvironment, thus hampering in vivo translational insight. Major weaknesses include atmospheric (21%) O2 tension and lack of intercellular communication, the two factors likely impacting metabolism and signaling. Here, we addressed this issue in mouse neurons and astrocytes in primary culture. We found that the signs of cellular and mitochondrial integrity were optimal when these cells were acclimated to grow in coculture, to emulate intercellular coupling, under physiologic (5%) O2 tension. Transcriptomic scrutiny, performed to elucidate the adaptive mechanism involved, revealed that the vast majority of differentially expressed transcripts were downregulated in both astrocytes and neurons. Gene ontology evaluation unveiled that the largest group of altered transcripts was glycolysis, which was experimentally validated by metabolic flux analyses. This protocol and database resource for neural cells grown under in vivo-like microenvironment may move forward the translation of basic into applied neurobiological research.

Datos de la publicación

ISSN/ISSNe:
0021-9258, 1083-351X

JOURNAL OF BIOLOGICAL CHEMISTRY  AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

Tipo:
Article
Páginas:
-

Documentos

  • No hay documentos

Métricas

Filiaciones

Filiaciones no disponibles

Campos de estudio

Financiación

Cita

Compartir